Antioxidant Activity and Tyrosinase Inhibitor of Red Betel Leaf Extract

  • Mustika Weni Department of basic medical science, Faculty of Medicine, Universitas Swadaya Gunung Jati, Indonesia
  • Mega Safithri Department of Biochemistry, Faculty of Mathematic and Natural Sciences, Bogor Agricultural University, Indonesia
Keywords: Antioxidant activity, malondialdehyde MDA, piper crocatum, tyrosinase

Abstract

Red betel leaf (Piper Crocatum) contains flavonoids, tannins, steroids, and alkaloids, known to act as antioxidants. This study aimed to determine the antioxidant activity of red betel leaf extract. The solvents used for the extraction process are ethanol and n-hexane. The thiobarbituric acid (TBA) method was used to determine antioxidant activity. The results showed that the extract of 200 ppm inhibited fatty acid oxidation by 52.13%. No significant difference (α = 0.05) inhibition of unsaturated fatty acids oxidation between the sample and α-tocopherol at 200 ppm. The ethanol extract of red betel can inhibit the tyrosinase enzyme higher than the n-hexane extract of red betel, as seen from the IC50 value of the ethanol extract of red betel of 1655 ppm, while the IC50 value of n-hexane of red betel is 3090.56 ppm.

Author Biography

Mega Safithri, Department of Biochemistry, Faculty of Mathematic and Natural Sciences, Bogor Agricultural University, Indonesia

Department of Biochemistry, Faculty of Mathematic and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor, Indonesia

References

Alfarabi, M. (2010). Kajian Antidiabetogenik Ekstrak Daun Sirih Merah (Piper crocatum) in vitro.

Aunan, J., Watson, M., Hagland, H., & Søreide, K. (2016). Molecular and biological hallmarks of ageing. Journal of British Surgery, 103(2), e29–e46.

Aziz, A., Andrianto, D., & Safithri, M. (2022). Penambatan Molekuler Senyawa Bioaktif Daun Wungu (Graptophyllum Pictum (L) Griff) sebagai Inhibitor Tirosinase. Indonesian Journal of Pharmaceutical Science and Technology, 9(2), 96–107.

Choudhary, M. I., Zafar, S., Khan, N. T., Ahmad, S., Noreen, S., Marasini, B. P., Al-Khedhairy, A. A., & Atta-ur-Rahman. (2012). Biotransformation of dehydroepiandrosterone with Macrophomina phaseolina and β-glucuronidase inhibitory activity of transformed products. Journal of Enzyme Inhibition and Medicinal Chemistry, 27(3), 348–355.

Danuri, H. M., Lestari, W. A., Sugiman, U., & Faridah, D. N. (2020). In vitro α-glucosidase inhibition and antioxidant activity of mulberry (Morus alba L.) leaf ethanolic extract. Jurnal Gizi Dan Pangan, 15(1), 45–52.

Davalli, P., Mitic, T., Caporali, A., Lauriola, A., & D’Arca, D. (2016). ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxidative Medicine and Cellular Longevity, 2016.

Departemen Kesehatan Republik Indonesia. 2008. Farmakope Herbal Indonesia

Edisi 1. Jakarta (ID) : Departemen Kesehatan Republik Indonesia.

Di Petrillo, A., González-Paramás, A. M., Era, B., Medda, R., Pintus, F., Santos-Buelga, C., & Fais, A. (2016). Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complementary and Alternative Medicine, 16(1), 1–9.

Handayani, T., & Rachma, N. (2013). Pesantren Lansia sebagai Upaya Meminimalkan Risiko Penurunan Fungsi Kognitif pada Lansia di Balai Rehabilitasi Sosial Lansia Unit II Pucang Gading Semarang. Jurnal Keperawatan Komunitas, 1(1).

Harborne, J. (1987). Metode Fitokimia. Padmawinata K., Soediro I., penerjemah. Phytochemical Methods. ITB. Bandung.

Ikelle, I. I., Chukwuma, A., & Ivoms, S. (2014). The characterization of the heating properties of briquettes of coal and rice husk. IOSR J Appl Chem, 7(5), 100–105.

Jeon, N.-J., Kim, Y.-S., Kim, E.-K., Dong, X., Lee, J.-W., Park, J.-S., Shin, W.-B., Moon, S.-H., Jeon, B.-T., & Park, P.-J. (2018). Inhibitory effect of carvacrol on melanin synthesis via suppression of tyrosinase expression. Journal of Functional Foods, 45, 199–205.

Kartika, Y. (n.d.). Aktivitas Antioksidasi Campuran Ekstrak Daun Sirih Merah dan Kulit Kayu Manis.

Kothapalli, L., Sawant, P., AshaThomas, R. W., & Bhosale, K. (2021). Understanding the Molecular Mechanism of Phytoconstituents as Tyrosinase Inhibitors for Treatment of Hyperpigmentation. Saudi J. Med. Pharm. Sci, 7, 135–144.

Kumadoh, D., Archer, M.-A., Kyene, M. O., Yeboah, G. N., Adi-Dako, O., Osei-Asare, C., Adase, E., Mintah, S. O., Amekyeh, H., & Appiah, A. A. (2022). Approaches for the elimination of microbial contaminants from lippia multiflora mold. Leaves intended for tea bagging and evaluation of formulation. Advances in Pharmacological and Pharmaceutical Sciences, 2022.

Kwan, H. Y., Wu, J., Su, T., Chao, X.-J., Yu, H., Liu, B., Fu, X., Tse, A. K. W., Chan, C. L., & Fong, W. F. (2017). Schisandrin B regulates lipid metabolism in subcutaneous adipocytes. Scientific Reports, 7(1), 10266.

Li, H. X., Widowati, W., Azis, R., Yang, S. Y., Kim, Y. H., & Li, W. (2019). Chemical constituents of the Piper crocatum leaves and their chemotaxonomic significance. Biochemical Systematics and Ecology, 86, 103905.

Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., & Bonaduce, D. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 757–772.

Mohammed, M. S., Osman, W. J., Garelnabi, E. A., Osman, Z., Osman, B., Khalid, H. S., & Mohamed, M. A. (2014). Secondary metabolites as anti-inflammatory agents. J Phytopharmacol, 3(4), 275–285.

Muzzalupo, I. (2013). Food industry. BoD–Books on Demand.

Puspita, P. J., Safithri, M., & Sugiharti, N. P. (2018). Antibacterial activities of sirih merah (Piper crocatum) leaf extracts. Current Biochemistry, 5(3), 1–10.

Rashed, K., Medda, R., Spano, D., & Pintus, F. (2016). Evaluation of antioxidant, anti-tyrosinase potentials and phytochemical composition of four Egyptian plants. International Food Research Journal, 23(1).

Safithri, M., & Kurniawati, A. (2016). Formula of Piper crocatum, Cinnamomum burmanii, and Zingiber officinale extracts as a functional beverage for diabetics. International Food Research Journal, 23(3), 1123.

Safithri, M., Nur Faridah, D., Ramadani, F., & Pratama, R. (2022). Antioxidant activity of ethanol extract and fractions of Piper crocatum with Rancimat and cuprac methods. Turkish Journal of Biochemistry, 47(6), 795–801.

Suganya, K. U., Govindaraju, K., Kumar, V. G., Dhas, T. S., Karthick, V., Singaravelu, G., & Elanchezhiyan, M. (2015). Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Materials Science and Engineering: C, 47, 351–356.

Tsikas, D. (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry, 524, 13–30.

Zaelani, B. F. D. (n.d.). Kajian In Silico dan In Vitro Piper crocatum Ruiz & Pav sebagai Inhibitor HMG-KoA Reduktase serta Aktivitas Penghambatan Terbentuknya Malondialdehida.

Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., & Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 279–309.

Zuo, A.-R., Dong, H.-H., Yu, Y.-Y., Shu, Q.-L., Zheng, L.-X., Yu, X.-Y., & Cao, S.-W. (2018). The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chinese Medicine, 13, 1–12.

Published
2023-12-30
How to Cite
Weni, M., & Safithri, M. (2023). Antioxidant Activity and Tyrosinase Inhibitor of Red Betel Leaf Extract. Indonesian Journal of Applied Research (IJAR), 4(3), 234-245. https://doi.org/10.30997/ijar.v4i3.374