Performance and Relationship of Various Local Garlic Genotypes and Putative Mutants Resulting from MV4 Irradiation Using Morphological Marker

  • Yusup Bahrul Ulum Department Agronomy and Horticulture, IPB University, Indonesia
  • Diny Dinarti Department Agronomy and Horticulture, IPB University, Indonesia
  • Sudarsono Department Agronomy and Horticulture, IPB University, Indonesia
Keywords: anthocyanins, irradiation, gamma rays, mutation induction, putative mutants

Abstract

Garlic (Allium sativum L.) is used as a medicinal plant or seasoning, but its national production can only meet people's needs by 6.4%, and 95% is imported from China. The development rate of new garlic varieties is relatively slow because garlic is generally propagated vegetatively through cloves; therefore, its diversity has become relatively narrow. Character and diversity can be improved by inducing mutations using gamma-ray irradiation. Experiments on garlic subjected to gamma-ray irradiation have shown physiological changes in the putative 3rd (MV3) mutant offspring. The experiment's 4th mutant progeny (MV4) was re-planted and compared with other local genotypes. The aim was to perform clustering based on the yielding characteristics and the intensity of the anthocyanin content. The experiment used a single-plant design with 21 experimental units, namely 16 MV4 genotypes and 5 control genotypes. The analysis of variance showed that the MV4 Lumbu Kuning 1 Gy and Ciwidey 2 Gy genotypes had better tuber weight and diameter than the other genotypes, including the control genotypes. Cluster analysis clustered garlic genotypes into five groups at a cophenetic distance 0.4. Principal component analysis (PCA) also divided the garlic genotypes into four quadrants. Genotypes in quadrant 2 had anthocyanin content intensities superior to those of other genotypes.

References

Abdullah, S., Kamaruddin, N. Y., & Harun, A. R. (2018). The effect of gamma radiation on plant morphological characteristics of Zingiber officinale Roscoe. International Journal on Advanced Science, Engineering and Information Technology, 8(5), 2085–2091. https://doi.org/10.18517/ijaseit.8.5.4641

Aisyah, S. I., Marthin, Y., & Damanik, M. R. M. (2015). Improvement of coleus performance through mutation induction using gamma ray irradiation. Journal of Tropical Crop Science, 2(1), 26–32.

Alvarez-Suarez, J. M., Cuadrado, C., Redondo, I. B., Giampieri, F., González-Paramás, A. M., & Santos-Buelga, C. (2021). Novel approaches in anthocyanin research - Plant fortification and bioavailability issues. Trends in Food Science and Technology, 1–14. https://doi.org/10.1016/j.tifs.2021.01.049

Ammarellou, A., Yousefi, A. R., Heydari, M., Uberti, D., & Mastinu, A. (2022). Biochemical and botanical aspects of Allium sativum L. sowing. BioTech, 11(2), 1–9. https://doi.org/10.3390/biotech11020016

BPS, [Badan Pusat Statistik]. (2021). Tabel Dinamis Produksi Bawang Putih. https://www.bps.go.id/subject/55/hortikultura.html

Chanchan, M., Hore, J. K., & Ghanti, S. (2013). Response of garlic to foliar application of some micronutrients. Journal of Crop and Weed, 9(2), 138–141.

Draghici, E. M., & Lagunovschi-luchian, V. (2015). The planting period and the size of cloves influences on garlic production. AgroLife Scientific Journal, 4(2), 9–16.

Du, Y., Feng, Z., Wang, J., Jin, W., Wang, Z., Guo, T., Chen, Y., Feng, H., Yu, L., Li, W., & Zhou, L. (2022). Frequency and spectrum of mutations induced by gamma rays revealed by phenotype screening and whole-genome re-sequencing in Arabidopsis thaliana. International Journal of Molecular Sciences, 23(2), 1–22. https://doi.org/10.3390/ijms23020654

Due, M. S., Susilowati, A., & Yunus, A. (2019). The effect of gamma rays irradiation on diversity of Musa paradisiaca var. sapientum as revealed by ISSR molecular marker. Biodiversitas, 20(5), 1416–1422. https://doi.org/10.13057/biodiv/d200534

Dwinanda, P., Syukur, S., Suliansyah, I., & Suliansyah, I. (2020). Induction of mutations with gamma ray radiation to improve the characteristics of wheat [Triticum aestivum L.] genotype IS-Jarissa. IOP Conference Series: Earth and Environmental Science, 1–10. https://doi.org/10.1088/1755-1315/497/1/012013

Efendi, A. M., Fahmi, I., Samanhudi, S., & Purwanto, E. (2020). Pengaruh ukuran siung dan jarak tanam terhadap pertumbuhan dan hasil bawang putih varietas lumbu hijau. Agrotechnology Research Journal, 4(1), 6–10. https://doi.org/10.20961/agrotechresj.v4i1.39919

Fadli, N., Syarif, Z., Satria, B., & Akhir, N. (2018). The effect of gamma cobalt-60 ray irradiation on cultivar growth in taro white (Xhanthosoma Sagittifolium L.). International Journal of Environment, Agriculture and Biotechnology, 3(6), 2020–2025. https://doi.org/10.22161/ijeab/3.6.9

Geneva. (2022). Guidelines sor The Conduct of Tests for Distinctness, Uniformity and Stability: Garlic (Allium sativum L.). TG/162/4 Rev. International Union for The Protection of New Varieties of Plants.

Greenacre, M., Groenen, P. J. F., Hastie, T., Iodice, A., Markos, A., & Tuzhilina, E. (2023). Principal component analysis (No. 1856; Economics Working Paper). https://econ-papers.upf.edu/papers/1856.pdf

Gultom, T., Simbolon, D. L., & Nainggolan, W. S. (2020). Effect of gamma rays on phenotypic of garlic cultivar Doulu. IOP Conference Series: Materials Science and Engineering, 1–10. https://doi.org/10.1088/1757-899X/725/1/012081

Hernita, D., Salvia, E., & Bobihoe, J. (2019). Characterization of morphology and potential of pineapple genetic resources in peatland of Jambi Province. Journal of Tropical Horticulture, 2(1), 108–114. https://doi.org/10.33089/jthort.v2i1.17

Jankowicz-Cieslak, J., & Till, B. J. (2016). Chemical mutagenesis of seed and vegetatively propagated plants using EMS. Current Protocols in Plant Biology, 1(4), 617–635. https://doi.org/10.1002/cppb.20040

Kaufman, L., & Rousseeuw, P. J. (2005). Finding Groups in Data: An Introduction to Cluster Analysis. A John Wiley & Sons, Inc., Publication.

KEMENTAN, [Kementerian Pertanian RepublikIndonesia]. (2021). Basis Data Konsumsi Pangan. 15–17. https://aplikasi2.pertanian.go.id/konsumsi2017/konsumsi/kapita_per_tahun

Khajah, M. A., Orabi, K. Y., Hawai, S., Sary, H. G., & EL-Hashim, A. Z. (2019). Onion bulb extract reduces colitis severity in mice via modulation of colonic inflammatory pathways and the apoptotic machinery. Journal of Ethnopharmacology, 241(1), 1–10. https://doi.org/10.1016/j.jep.2019.112008

Lee, K. A., Kim, K. T., Kim, H. J., Chung, M. S., Chang, P. S., Park, H., & Pai, H. D. (2014). Antioxidant activities of onion (Allium cepa L.) peel extracts produced by ethanol, hot water, and subcritical water extraction. Food Science and Biotechnology, 23(2), 615–621. https://doi.org/10.1007/s10068-014-0084-6

Lestari, E. G. (2021). Mutation induction for breeding in ornamental plants. Jurnal Ilmu-ilmu Hayati, 20(3), 335–344.

Metrani, R., Singh, J., Acharya, P., Jayaprakasha, G. K., & Patil, B. S. (2020). Comparative metabolomics profiling of polyphenols, nutrients and antioxidant activities of two red onion (Allium cepa L.) cultivars. Plants, 9(9), 1–18. https://doi.org/10.3390/plants9091077

Pangestuti, P. W., Sudarsono, S., & Dinarti, D. (2020). Determine the effect of gamma irradiation towards the growth of two local garlic genotypes. IOP Conference Series: Earth and Environmental Science, 497(1), 1–7. https://doi.org/10.1088/1755-1315/497/1/012014

Parreño, R., Rodríguez-Alcocer, E., Martínez-Guardiola, C., Carrasco, L., Castillo, P., Arbona, V., et al. (2023). Turning garlic into a modern crop: State of the art and perspectives. Plants, 12(6), 1–18. https://doi.org/10.3390/plants12061212

Peng, Z., Gong, X., Yang, Y., Huang, L., Zhang, Q., Zhang, P., Wan, R., & Zhang, B. Hepatoprotective effect of quercetin against LPS/D-GalN induced acute liver injury in mice by inhibiting the IKK/NF-κB and MAPK signal pathways. Proceedings. International Immunopharmacology, 2017. 281–289. https://doi.org/10.1016/j.intimp.2017.09.022

Raggi, P. (2015). Inflammation and calcification: The chicken or the hen?. Atherosclerosis, 238(2), 173–174. https://doi.org/10.1016/j.atherosclerosis.2014.10.025

Santosa, E., Pramono, S., Mine, Y., & Sugiyama, N. (2014). Gamma Irradiation on growth and development of Amorphophallus muelleri Blume. Jurnal Agronomi Indonesia, 42(2), 118–123.

Siswadi, E., Putri, S. U., Firgiyanto, R., & Putri, C. F. (2019). Peningkatan pertumbuhan dan produksi bawang putih (Allium sativum L.) melalui aplikasi vernalisasi dan pemberian BAP (Benzil Amino Purin). Agrovigor, 12(2), 53–58.

Tazi, I., Isnaini, N. L., Mutmainnah, M., & Ainur, A. (2019). Principal component analysis (PCA) method for classification of beef and pork aroma based on electronic nose. Indonesian Journal of Halal Research, 1(1), 5–8. https://doi.org/10.15575/ijhar.v1i1.4155

Wang, R., Yang, L., Li, S., Ye, D., Yang, L., Liu, Q., Zhao, Z., Cai, Q., Tan, J., & Li, X. (2018). Quercetin inhibits breast cancer stem cells via downregulation of aldehyde dehydrogenase 1A1 (ALDH1A1), chemokine receptor type 4 (CXCR4), mucin 1 (MUC1), and epithelial cell adhesion molecule (EpCAM). Medical Science Monitor, 24(1), 412–420. https://doi.org/10.12659/MSM.908022

Winarni, U., Dinarti, D., & Aisyah, S. I. (2022). Evaluasi metabolomik mutan putatif bawang putih (MV3) hasil iradiasi gamma LD50. J. Hort, 50(1), 49–56. https://jurnal.ipb.ac.id/index.php/jurnalagronomi/article/view/38086%0Ahttps://jurnal.ipb.ac.id/index.php/jurnalagronomi/article/download/38086/23359

Published
2023-08-30
How to Cite
Ulum, Y. B., Dinarti, D., & Sudarsono. (2023). Performance and Relationship of Various Local Garlic Genotypes and Putative Mutants Resulting from MV4 Irradiation Using Morphological Marker. Indonesian Journal of Applied Research (IJAR), 4(2), 183-192. https://doi.org/10.30997/ijar.v4i2.357