Impact Properties of Hemp Natural – Glass Fibers Hybrid Polypropylene Sandwich Composites

  • Lies Banowati Department of Aeronautical Engineering, Faculty of Engineering, Nurtanio University, Indonesia
  • I Putu Udawan Pertama Department of Aeronautical Engineering, Faculty of Engineering, Nurtanio University, Indonesia
Keywords: E-glass, hemp natural fiber, hybrid sandwich composites, impact properties, lightweight material

Abstract

One way to improve the mechanical properties of composite structures is by hybridizing natural and synthetic fibers. Besides that, combined with sandwich structure composites consists of two relatively strong, thin, and stiff faces separated by a core, for example, balsa, foam, and honeycomb, a relatively thick lightweight. This research develops sandwich composites for structures that have able to withstand high loads and modulus-to-weight ratios but can absorb impacts through impact tests by utilizing the raw material of jute natural fiber, which is abundant in Indonesia so that this research study can predict the effect of variations in the hybridization of hemp natural fiber and the combination of hemp natural fiber with e-glass using polypropylene core sandwich composites by using hand lay-up and vacuum bagging methods. The current impact test results show that the hemp natural-e-glass fibers hybrid sandwich composites get a higher impact strength with a value of 0,019 J/mm² than the hemp-PP honeycomb hybrid sandwich composite with a value of 0,013 J/mm². It shows that by combining e-glass fiber in the composite, it can increase its impact strength and can be a lightweight structural material as being a new alternative material of jute and e-glass natural fiber hybrid sandwich composites with polypropylene cores to substitute conventional materials such as metals which is potential for applications in the automotive, building, and unmanned aerial vehicle industries.

References

ASTM D6110-10. (2018). Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics. Annual Book of ASTM Standards. United States: ASTM International.

Balogun, O. P., Alaneme, K. K., Adediran, A. A., Oladele, I. O., Omotoyinbo, J. A., & Tee, K. F. (2022). Evaluation of the Physical and Mechanical Properties of Short Entada mannii-Glass Fiber Hybrid Composites. Fibers, 10(3), 30. https://doi.org/10.3390/fib10030030

Banowati, L., Yudhistira, M., & Hartopo, H. (2022). Analisis Perbandingan Kekuatan Komposit Hybrid Sandwich Serat Rami-E-Glass/Epoxy Berdasarkan Variasi Ketebalan Core Kayu Balsa Terhadap Kemampuan Uji Bending. 7, 69–78. https://doi.org/10.28989/senatik.v7i0.465

Biron, M. (2018). Thermoplastics and thermoplastic composites. William Andrew. https://doi.org/10.1016/b978-0-08-102501-7.00006-0

Bouhfid, N., Raji, M., Boujmal, R., Essabir, H., Bensalah, M.-O., & Bouhfid, R. (2019). Numerical modeling of hybrid composite materials. In Modelling of damage processes in biocomposites, fibre-reinforced composites and hybrid composites (pp. 57–101). Elsevier. https://doi.org/10.1016/b978-0-08-102289-4.00005-9

Deshmukh, G. S. (2022). Advancement in hemp fibre polymer composites: A comprehensive review. Journal of Polymer Engineering, 42(7), 575–598. https://doi.org/10.1515/polyeng-2022-0033

Fatima, N. S., Dhaliwal, G. S., & Newaz, G. (2021). Influence of interfacial adhesive on impact and post-impact behaviors of CFRP/end-grain balsawood sandwich composites. Composites Part B: Engineering, 212, 108718. https://doi.org/10.1016/j.compositesb.2021.108718

Fazzolari, F. A. (2017). Sandwich structures. In Stability and vibrations of thin walled composite structures (pp. 49–90). Elsevier. https://doi.org/10.1016/b978-0-08-100410-4.00002-8

Frącz, W., Janowski, G., & Bąk, Ł. (2021). Influence of the alkali treatment of flax and hemp fibers on the properties of PHBV based biocomposites. Polymers, 13(12), 1965. https://doi.org/10.3390/polym13121965

Ghasemzadeh-Barvarz, M., Duchesne, C., & Rodrigue, D. (2015). Mechanical, water absorption, and aging properties of polypropylene/flax/glass fiber hybrid composites. Journal of Composite Materials, 49(30), 3781–3798. https://doi.org/10.1177/0021998314568576

Kapila, K., Samanta, S., & Kirtania, S. (2021). Fabrication and Characterization of Ramie Fiber Based Hybrid Composites. 839–848. https://doi.org/10.1007/978-981-15-7711-6_83

Liu, M., Thygesen, A., Summerscales, J., & Meyer, A. S. (2017). Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: A review. Industrial Crops and Products, 108, 660–683. https://doi.org/10.1016/j.indcrop.2017.07.027

Mataram, A., & Besi, N. P. (2019). Effect of Thickness Layer of Kenaf Fibre Reinfoeced Fibre Glass, Against Impact of Hybrid Composite Sandwich with Core Sengon. Journal of Mechanical Science and Engineering, 6(1), 013–017. https://doi.org/10.36706/jmse.v6i1.30

Melaibari, A., Wagih, A., Basha, M., Lubineau, G., Al-Athel, K., & Eltaher, M. A. (2022). Sandwich composite laminate with intraply hybrid woven CFRP/dyneema core for enhanced impact damage resistance and tolerance. Journal of Materials Research and Technology, 21, 1784–1797. https://doi.org/10.1016/j.jmrt.2022.10.026

Rafiqah, S. A., Diyana, A. N., Abdan, K., & Sapuan, S. (2023). Effect of Alkaline Treatment on Mechanical and Thermal Properties of Miswak (Salvadora persica) Fiber-Reinforced Polylactic Acid. Polymers, 15(9), 2228. https://doi.org/10.3390/polym15092228

Ramakrishnan, G., Ramnath, B. V., Vignesh, C., Vignesh, L., Perunddevan, T., & VidhyaRajan, M. (2018). Sandwich and Natural fiber composites-A review. 390(1), 012067. https://doi.org/10.1088/1757-899x/390/1/012067

Reddy, C. J., & Madhu, V. (2017). Dynamic behaviour of foams and sandwich panels under shock wave loading. Procedia Engineering, 173, 1627–1634. https://doi.org/10.1016/j.proeng.2016.12.260

Sanjay, M. R., Arpitha, G., & Yogesha, B. (2015). Study on mechanical properties of natural-glass fibre reinforced polymer hybrid composites: A review. Materials Today: Proceedings, 2(4–5), 2959–2967. https://doi.org/10.1016/j.matpr.2015.07.264

Sanjay, M., & Yogesha, B. (2017). Studies on natural/glass fiber reinforced polymer hybrid composites: An evolution. Materials Today: Proceedings, 4(2), 2739–2747. https://doi.org/10.1016/j.matpr.2017.02.151

Sathish, T., Palani, K., Natrayan, L., Merneedi, A., De Poures, M. V., & Singaravelu, D. K. (2021). Synthesis and characterization of polypropylene/ramie fiber with hemp fiber and coir fiber natural biopolymer composite for biomedical application. International Journal of Polymer Science, 2021, 1–8. https://doi.org/10.1155/2021/2462873

Sathyanarayana V., Sharath N., Dr. Irfan G., Swetadri Srinivasan, & Akshaya institute of technology tumkur. (2016). A Theoretical and Experimental Approach for Sandwich Composites. International Journal of Engineering Research And, V5(03), IJERTV5IS030641. https://doi.org/10.17577/IJERTV5IS030641

Shahril, S. M., Ridzuan, M. J. M., Majid, M. S. A., Bariah, A. M. N., Rahman, M. T. A., & Narayanasamy, P. (2022). Alkali treatment influence on cellulosic fiber from Furcraea foetida leaves as potential reinforcement of polymeric composites. Journal of Materials Research and Technology, 19, 2567–2583. https://doi.org/10.1016/j.jmrt.2022.06.002

Swolfs, Y., Gorbatikh, L., & Verpoest, I. (2014). Fibre hybridisation in polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 67, 181–200. https://doi.org/10.1016/j.compositesa.2014.08.027

Weijermars, W. (2016). Mechanical behaviour of composite sandwich panels in bending after impact (Master's thesis, University of Twente).

Yudhanto, F. (2015). Pengaruh Perlakuan Alkali Pada Serat Agave dan Ketebalan Inti Terhadap Kekuatan Bending Komposit Sandwich Serat Agave-Polyester dengan Inti Kayu Olahan (Engineering Wood). Teknoin, 21(1). https://doi.org/10.20885/teknoin.vol21.iss1.art6

Published
2023-08-10
How to Cite
Banowati, L., & Pertama, I. P. U. (2023). Impact Properties of Hemp Natural – Glass Fibers Hybrid Polypropylene Sandwich Composites. Indonesian Journal of Applied Research (IJAR), 4(2), 159-169. https://doi.org/10.30997/ijar.v4i2.299