Functional Response of Predator Paederus sp. (Coleoptera: Staphylinidae)

  • Astrid Sri Wahyuni Sumah Graduate Program of Biology Education, Universitas Muhammadiyah Palembang, Indonesia
Keywords: paederus sp., Aphid spp., predator, functional response, predation time

Abstract

Research on predatory predation of Paederus sp. (Coleoptera: Staphylinidae) was carried out to study the functional response of the predator Paederus sp. Functional response is a form and size predictor of consumer impact on resource populations, determining the effectiveness of a predator as an agent in biological control. Predation time in hungry and not-hungry conditions influences predator-prey interactions, which are essential in functional response. The method used in predating Paederus sp. on the prey of aphids was Aphid spp. They are using four levels of prey density with two different predator treatments. The results show the functional response model of Paederus sp. predators. against the prey of Aphid spp. Described in a type II model. The level of predation of Paederus sp. showed different results for the two treatments and an increasing cystoid curve at a rising rate. The level of predation is still increasing, along with the increase in host density, and can be a starting point for controlling the Aphid spp and using predators Paederus sp. in the field.

References

Berryman, A. A. (1992). The orgins and evolution of predator‐prey theory. Ecology, 73(5), 1530–1535.

Bong, L.-J., Neoh, K.-B., Jaal, Z., & Lee, C.-Y. (2012). Life table of Paederus fuscipes (Coleoptera: Staphylinidae). Journal of Medical Entomology, 49(3), 451–460.

Bong, L. J., Neoh, K. B., Jaal, Z., & Lee, C. Y. (2013). Influence of temperature on survival and water relations of Paederus fuscipes (Coleoptera: Staphylinidae). Journal of Medical Entomology, 50(5), 1003-1013

Canavero, A., Arim, M., Pérez, F., Jaksic, F. M., & Marquet, P. A. (2018). A metabolic view of amphibian local community structure: the role of activation energy. Ecography, 41(2), 388-400.

Costa, J. F., Matos, C. H., de Oliveira, C. R., da Silva, T. G., & Neto, I. F. L. (2017). Functional and numerical responses of Stethorus tridens Gordon (Coleoptera: Coccinellidae) preying on Tetranychus bastosi Tuttle, Baker & Sales (Acari: Tetranychidae) on physic nut (Jatropha curcas). Biological Control, 111, 1–5.

Daugaard, U., Petchey, O. L., & Pennekamp, F. (2019). Warming can destabilize predator–prey interactions by shifting the functional response from Type III to Type II. Journal of Animal Ecology, 88(10), 1575-1586.

Dick, J. T., Alexander, M. E., Ricciardi, A., Laverty, C., Downey, P. O., Xu, M., Jeschke, J. M., Saul, W.-C., Hill, M. P., & Wasserman, R. (2017). Functional responses can unify invasion ecology. Biological Invasions, 19, 1667–1672.

Donnelly, B. E., & Phillips, T. W. (2001). Functional response of Xylocoris flavipes (Hemiptera: Anthocoridae)-effects of prey species and habitat. Environmental Entomology, 30(3), 617-624

Emerick, B., & Singh, A. (2016). The effects of host-feeding on stability of discrete-time host–parasitoid population dynamic models. Mathematical Biosciences, 272, 54-63.

Emerick, B., Singh, A., & Chhetri, S. R. (2020). Global redistribution and local migration in semi-discrete host–parasitoid population dynamic models. Mathematical Biosciences, 327, 108409.

Farhadi, R., Allahyari, H., & Juliano, S. A. (2010). Functional response of larval and adult stages of Hippodamia variegata (Coleoptera: Coccinellidae) to different densities of Aphis fabae (Hemiptera: Aphididae). Environmental Entomology, 39(5), 1586-1592.

Holling, C. S. (1959). Some characteristics of simple types of predation and parasitism1. The Canadian Entomologist, 91(7), 385–398.

Huang, C. Z., Zhang, R. Q., & Tu, Y. T. (2001). Investigation an outbreak of 392 cases of paederus dermatitis. JOURNAL OF CLINICAL DERMATOLOGY-NANJING-, 30(5), 306-307.

Jafari, R., & Goldasteh, S. (2009). Functional response of Hippodamia variegata (Goeze)(Coleoptera: Coccinellidae) on Aphis fabae (Scopoli)(Homoptera: Aphididae) in laboratory conditions. Acta Entomol. Serbica, 14, 93–100.

Knies, J. L., & Kingsolver, J. G. (2010). Erroneous Arrhenius: modified Arrhenius model best explains the temperature dependence of ectotherm fitness. The American Naturalist, 176(2), 227-233.

Krinsky, W. L. (2019). Beetles (Coleoptera). In Medical and veterinary entomology (pp. 129–143). Elsevier.

Linzmaier, S. M., & Jeschke, J. M. (2020). Towards a mechanistic understanding of individual‐level functional responses: Invasive crayfish as model organisms. Freshwater Biology, 65(4), 657-673.

Mori, H., & Chant, D. (1966). The influence of prey density, relative humidity, and starvation on the predacious behavior of Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae). Canadian Journal of Zoology, 44(3), 483–491.

Pervez, A. (2005). Functional responses of coccinellid predators: An illustration of a logistic approach. Journal of Insect Science, 5(1).

Purnomo, S. D. (2010). Penggunaan predator untuk mengendalikan kutu kebul (Bemisia tabaci), vektor penyakit kuning pada cabai di Kabupaten Tanggamus. HPT Tropika, 10(2), 184–189.

Riemer, K., Anderson‐Teixeira, K. J., Smith, F. A., Harris, D. J., & Ernest, S. M. (2018). Body size shifts influence effects of increasing temperatures on ectotherm metabolism. Global Ecology and Biogeography, 27(8), 958-967.

Schreiber, S. J., & Vejdani, M. (2006). Handling time promotes the coevolution of aggregation in predator–prey systems. Proceedings of the Royal Society B: Biological Sciences, 273(1583), 185-191.

Sepúlveda, F., & Carrillo, R. (2008). Functional response of the predatory mite Chileseius camposi (Acarina: Phytoseiidae) on densities of it prey, Panonychus ulmi (Acarina: Tetranychidae). Revista de Biología Tropical, 56(3), 1255–1260.

Shi, W., Huang, Y., Wei, C., & Zhang, S. (2021). A stochastic Holling-type II predator-prey model with stage structure and refuge for prey. Advances in Mathematical Physics, 2021, 1–14.

Singh, A. (2021). Attack by a common parasitoid stabilizes population dynamics of multi-host communities. Journal of Theoretical Biology, 531, 110897.

Singh, A., & Emerick, B. (2021). Generalized stability conditions for host–parasitoid population dynamics: Implications for biological control. Ecological Modelling, 456, 109656.

Singh, A. (2022). A comparative approach to stabilizing mechanisms between discrete-and continuous-time consumer-resource models. Plos one, 17(4), e0265825.

Stewart, B., Gruenheit, N., Baldwin, A., Chisholm, R., Rozen, D., Harwood, A., ... & Thompson, C. R. (2022). The genetic architecture underlying prey-dependent performance in a microbial predator. Nature communications, 13(1), 319.

Sudarjat, S., Utomo, A., & Dono, D. (2009). Biologi dan kemampuan memangsa Paederus fuscipes Curtis (Coleoptera: Staphylinidae) terhadap Bemisia tabaci Gennadius (Homoptera: Aleyrodidae). Agrikultura, 20(3).

Tan, A. F. H., Nagao, H., & Zuharah, W. F. (2022). Evaluations Of Entomopathogenic Fungi, Metarhizium Anisopliae Inoculate On The Treated Soils Towards Paederus fuscipes. Malaysian Applied Biology, 51(1), 129–136.

Timms, J., Oliver, T., Straw, N., & Leather, S. (2008). The effects of host plant on the coccinellid functional response: Is the conifer specialist Aphidecta obliterata (L.)(Coleoptera: Coccinellidae) better adapted to spruce than the generalist Adalia bipunctata (L.)(Coleoptera: Coccinellidae)? Biological Control, 47(3), 273–281.

Upadhyay, R. K., Parshad, R. D., Antwi-Fordjour, K., Quansah, E., & Kumari, S. (2019). Global dynamics of stochastic predator–prey model with mutual interference and prey defense. Journal of Applied Mathematics and Computing, 60, 169-190.

Urban, M. C., Freidenfelds, N. A., & Richardson, J. L. (2020). Microgeographic divergence of functional responses among salamanders under antagonistic selection from apex predators. Proceedings of the Royal Society B, 287(1938), 20201665.

Valderrama, D., & Fields, K. H. (2017). Flawed evidence supporting the Metabolic Theory of Ecology may undermine goals of ecosystem-based fishery management: the case of invasive Indo-Pacific lionfish in the western Atlantic. ICES Journal of Marine Science, 74(5), 1256-1267.

Wang, B., & Ferro, D. N. (1998). Functional responses of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) to Ostrinia nubilalis (Lepidoptera: Pyralidae) under laboratory and field conditions. Environmental Entomology, 27(3), 752-758.

Winasa, I. W., Hindayana, D., & Santoso, S. (2007). Pelepasan dan Pemangsaan Kumbang Jelajah Paederusfuscipes (Coleoptera: Staphylinidae) Terhadap Telur Dan Larva Helicoverpa armigera (Lepidoptera: Noctuidae). Jurnal Ilmu Pertanian Indonesia, 12(3), 147-153.

Zuharah, W. F., & Maryam, S. (2020). Multifarious Roles of Feeding Behaviours in Rove Beetle, Paederus fuscipes. Sains Malaysiana, 49(1), 1-10.

Published
2023-04-18
How to Cite
Sumah, A. S. W. (2023). Functional Response of Predator Paederus sp. (Coleoptera: Staphylinidae). Indonesian Journal of Applied Research (IJAR), 4(1), 53-62. https://doi.org/10.30997/ijar.v4i1.257