In Silico Analysis of Bioactive Compounds in Red Betel Leaves to Glutathion Peroxidase Activity

  • Mutmainnah Agustiawan Umar Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University
  • Mega Safithri Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University
  • Rahadian Pratama Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University
Keywords: antioxidant, free radicals, ligand, molecular docking, receptor

Abstract

Glutathione peroxidase (GPx) is one of the antioxidants that acts as a protector of organisms from oxidative stress. Several compounds in certain plants have been shown to increase GPx activity. Red betel leaves are known to contain antioxidant compounds that have the potential to increase GPx activity. This study aims to see the potential of red betel compound as an activator of the enzyme glutathione peroxidase. As many as 44 red betel leaves active compounds which were tested by in silico method started with receptor and ligand preparation, followed by grid box determination, then proceeded to virtual screening and molecular docking. The virtual screening stage eliminated 7 compounds and in Lipinski test stage there were 2 compounds that were eliminated, also the AdmetSAR test eliminated 21 sompunds, so that there were 14 compounds  continued to the file preparation stage, molecular docking and analysis of ligand-receptor interactions. The parameters of affinity energy and percentage of binding site similarity (%BSS) used in the molecular docking analysis showed that there are several compounds that have the potential as antioxidant compounds by increasing the performance of the glutathione peroxidase enzyme, the best compound identified is guanidine tartrate with an affinity energy of -4.8 Kcal/mol and BSS percentage of 62.5%, this compound is also considered safe to be consumed based on its physicochemical and toxicity test.

References

Ali, S. T., Jahangir, S., Karamat, S., Fabian, W. M., Nawara, K., & Kóňa, J. (2010). Theoretical Study on the Redox Cycle of Bovine Glutathione Peroxidase GPx1: P K a Calculations, Docking, and Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 6(5), 1670–1681.

Almi, Z., Belaidi, S., Lanez, T., & Tchouar, N. (2014). Structure Activity Relationships, QSAR Modeling and Drug-like calculations of TP inhibition of 1, 3, 4-oxadiazoline-2-thione Derivatives. International Letters of Chemistry, Physics and Astronomy, 18, 113-124.

Anand, P., Rajakumar, D., Jeraud, M., Felix, A., & Balasubramanian, T. (2011). Effects of taurine on glutathione peroxidase, glutathione reductase and reduced glutathione levels in rats. Pakistan Journal of Biological Sciences: PJBS, 14(3), 219–225.

Anitha, K., Gopi, G., & Girish, S. K. P. (2013). Molecular docking study on dipeptidyl peptidase-4 inhibitors. International Journal of Research and Development in Pharmacy and Life Sciences, 2, 602–610.

Astri, Y., Sitorus, T., Sigit, J. I., & Sujatno, M. (2012). Toksisitas Akut per Oral Ekstrak Etanol Daun Dewa (Gynura pseudochina (Lour.) DC) terhadap Kondisi Lambung Tikus Jantan dan Betina Galur Wistar. Majalah Kedokteran Bandung, 44(1), 38-43.

Aswani, T., Manalu, W., Suprayogi, A., & Rahminiwati, M. (2015). POTENSI EKSTRAK PEGAGAN (Centella Asiatica) DAN KUNYIT (Curcuma longa) UNTUK MENINGKATKAN AKTIVITAS ENZIM GLUTATION PEROKSIDASE (GSH Px) PADA JARINGAN HATI TIKUS. Berita Biologi, 14(3), 259–265.

Banerjee, P., & Eckert, O. (2018). A.; Schrey, AK; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res, 46, W257-W263.

Belinda, N. S., Swaleh, S., Mwonjoria, K. J., & Wilson, M. N. (2019). Antioxidant activity, total phenolic and flavonoid content of selected Kenyan medicinal plants, sea algae and medicinal wild mushrooms. African Journal of Pure and Applied Chemistry, 13(3), 43–48.

Bhat, V., & Chatterjee, J. (2021). The use of in silico tools for the toxicity prediction of potential inhibitors of SARS-CoV-2. Alternatives to Laboratory Animals, 49(1-2), 22-32.

Cao, C., Leng, Y., Li, C., & Kufe, D. (2003). Functional interaction between the c-Abl and Arg protein-tyrosine kinases in the oxidative stress response. Journal of Biological Chemistry, 278(15), 12961–12967.

Dallakyan, S., & Olson, A. (2015). Chemical Biology; Hempel, JE, Williams, CH, Hong, CC, Eds.

Di, L., & Kerns, E. (2015). Drug-like properties: concepts, structure design and methods from ADME to toxicity optimization. Academic press.

Dwi, P. H., & Abdul, K. (2011). Pengantar Kimia Komputasi. Lubuk agung.

El-Din, H. M. A., Loutfy, S. A., Fathy, N., Elberry, M. H., Mayla, A. M., Kassem, S., & Naqvi, A. (2016). Molecular docking based screening of compounds against VP40 from Ebola virus. Bioinformation, 12(3), 192.

Ferencz, L., & Muntean, D. L. (2015). Identification of new superwarfarin-type rodenticides by structural similarity. The docking of ligands on the vitamin K epoxide reductase enzyme’s active site. Acta Universitatis Sapientiae, Agriculture and Environment, 7(1), 108–122.

Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., ... & Tang, Y. (2019). ADMET-score–a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm, 10(1), 148-157.

Halim, A. M., Prajitno, A., & Chang, C. C. (2018). Enhancement glutathione peroxidase activity and α2-macroglobulin gene expression of Macrobrachium rosenbergii Fed With Aqueous Morinda citrifolia Leaves Extract-Supplemented Diet. Indonesian Journal of Tropical Aquatic, 1(1), 9–16.

Hall, M. D., Marshall, T. S., Kwit, A. D., Jenkins, L. M. M., Dulcey, A. E., Madigan, J. P., Pluchino, K. M., Goldsborough, A. S., Brimacombe, K. R., & Griffiths, G. L. (2014). Inhibition of glutathione peroxidase mediates the collateral sensitivity of multidrug-resistant cells to tiopronin. Journal of Biological Chemistry, 289(31), 21473–21489.

Hanif, A. U., Lukis, P. A., & Fadlan, A. (2020). Pengaruh minimisasi energi MMFF94 dengan MarvinSketch dan open Babel PyRx pada penambatan molekular turunan oksindola tersubstitusi. Alchemy, 8(2), 33–40.

Ighodaro, O., & Akinloye, O. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293.

Islam, T., Manna, M., & Reddy, M. K. (2015). Glutathione peroxidase of Pennisetum glaucum (PgGPx) is a functional Cd2+ dependent peroxiredoxin that enhances tolerance against salinity and drought stress. PLoS One, 10(11), e0143344.

Ma, L., Ohyagi, Y., Nakamura, N., Iinuma, K. M., Miyoshi, K., Himeno, E., Soejima, N., Yanagihara, Y. T., Sakae, N., & Yamasaki, R. (2011). Activation of glutathione peroxidase and inhibition of p53-related apoptosis by apomorphine. Journal of Alzheimer’s Disease, 27(1), 225–237.

Mansourian, M., Sadeghi, H., & Doustimotlagh, A. H. (2018). Activation of the glutathione peroxidase by metformin in the bile-duct ligation-induced liver injury: in vivo combined with molecular docking studies. Current Pharmaceutical Design, 24(27), 3256-3263.

Mathew, B. B., Tiwari, A., & Jatawa, S. K. (2011). Free radicals and antioxidants: A review. Journal of Pharmacy Research, 4(12), 4340–4343.

Miteva, M. A., Robert, C. H., Maréchal, J. D., & Perahia, D. (2011). Receptor flexibility in ligand docking and virtual screening. In-silico lead discovery. Bentham Science Publishers, 99-117.

Ochieng, P. J., Sumaryada, T., & Okun, D. (2017). Molecular docking and pharmacokinetic prediction of herbal derivatives as maltase-glucoamylase inhibitor. Asian J Pharm Clin Res, 10(9), 392–398.

Orian, L., Mauri, P., Roveri, A., Toppo, S., Benazzi, L., Bosello-Travain, V., De Palma, A., Maiorino, M., Miotto, G., & Zaccarin, M. (2015). Selenocysteine oxidation in glutathione peroxidase catalysis: An MS-supported quantum mechanics study. Free Radical Biology and Medicine, 87, 1–14.

Pannala, V., Bazil, J., Camara, A., & Dash, R. (2014). A mechanistic mathematical model for the catalytic action of glutathione peroxidase. Free Radical Research, 48(4), 487–502.

Pannindriya, P., Safithri, M., & Tarman, K. (2021). Analisis In Silico Senyawa Aktif Sprirulina platensis sebagai Inhibitor Tirosinase. Jurnal Pengolahan Hasil Perikanan Indonesia, 24(1), 70-77.

Parildar, H., Serter, R., & Yesilada, E. (2011). Diabetes mellitus and phytotherapy in Turkey. JPMA-Journal of the Pakistan Medical Association, 61(11), 1116.

Pathni, P. M. S. D. (2018). Terapi Diabetes dengan GLP-1 Receptor Agonist. Cermin Dunia Kedokteran, 45(4), 291-296.

Patil, R., Das, S., Stanley, A., Yadav, L., Sudhakar, A., & Varma, A. K. (2010). Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PloS One, 5(8), e12029.

Pratama, M. R. F. (2016). Studi Docking Molekular Senyawa Turunan Kuinolin terhadap Reseptor Estrogen-α (Molecular Docking Study of Quinoline Derivatives Towards Estrogen-α Receptor). Jurnal Surya Medika, 2(1).

Ramadhan, S., Iswari, R., & Marianti, A. (2019). Effect of red betel (Piper crocatum Ruiz & Pav.) leaves extract on blood glucose levels and glutathione peroxidase levels in hyperglycemic male rats. Biotropika, 7(1), 1–10.

Rai, D. K., & Rieder, E. (2012). Homology modeling and analysis of structure predictions of the bovine rhinitis B virus RNA dependent RNA polymerase (RdRp). International journal of molecular sciences, 13(7), 8998-9013.

Retnaningsih, C., Darmono, D., Widiarnoko, B., & Muis, S. F. (2013). Peningkatan aktivitas antioksidan superoksida dismutase pada tikus hiperglikemi dengan asupan tempe koro benguk (Mucuna pruriens L.). Agritech, 33(2).

Safithri, M., & Kurniawati, A. (2016). Formula of Piper crocatum, Cinnamomum burmanii, and Zingiber officinale extracts as a functional beverage for diabetics. International Food Research Journal, 23(3), 1123.

Saputri, K. E., Fakhmi, N., Kusumaningtyas, E., Priyatama, D., & Santoso, B. (2016). Docking molekular potensi anti diabetes melitus tipe 2 turunan zerumbon sebagai inhibitor aldosa reduktase dengan autodock-vina. Chimica et Natura Acta, 4(1), 16–20.

Setiawan, J., & Nugroho, T. (2018). Pengaruh Ekstrak Kulit Manggis terhadap Enzim Katalase Hepar Tikus Terpapar Minyak Jelantah. DIPONEGORO MEDICAL JOURNAL (JURNAL KEDOKTERAN DIPONEGORO), 7(1), 263–272.

Sinurat, M. R., Rahmayanti, Y., & Rizarullah, R. (2021). Uji Aktivitas Antidiabetes Senyawa Baru Daun Yakon (Smallanthus sonchifolius) sebagai Inhibitor Enzim DPP-4: Studi in Silico. Jurnal IPA & Pembelajaran IPA, 5(2), 138–150.

Syahdi, R. R., Mun'im, A., Suhartanto, H., & Yanuar, A. (2012). Virtual screening of Indonesian herbal database as HIV-1 reverse transcriptase inhibitor. Bioinformation, 8(24), 1206.

Syahputra, G. (2014). Simulasi docking kurkumin enol, bisdemetoksikurkumin dan analognya sebagai inhibitor enzim12-lipoksigenase. Jurnal Biofisika, 10(1).

Tonahi, J. M. M., Nuryanti, S., & Suherman, S. (2014). Antioksidan dari daun sirih merah (Piper crocatum). Jurnal Akademika Kimia, 3(3), 158–164.

Tosatto, S. C., Bosello, V., Fogolari, F., Mauri, P., Roveri, A., Toppo, S., Flohé, L., Ursini, F., & Maiorino, M. (2008). The catalytic site of glutathione peroxidases. Antioxidants & Redox Signaling, 10(9), 1515–1526.

Werdhaswari, A. (2014). Peran antioksidan bagi kesehatan. Jurnal Biotek Medisiana Indonesia. 3(2), 59-68.

Published
2022-12-27
How to Cite
Umar, M. A., Safithri, M., & Pratama, R. (2022). In Silico Analysis of Bioactive Compounds in Red Betel Leaves to Glutathion Peroxidase Activity. Indonesian Journal of Applied Research (IJAR), 3(3), 150-165. https://doi.org/10.30997/ijar.v3i3.227