Active Compound of Red Betel (Piper Crocatum Ruiz & Pav) as Activator of Cu/Zn Superoxide Dismutase in Silico

  • Riska Susila Putri Department of Biochemistry, IPB University, Indonesia
  • Mega Safithri Department of Biochemistry, IPB University, Indonesia
  • Dimas Andrianto Department of Biochemistry, IPB University, Indonesia
Keywords: free radicals; antioxidant; red betel; molecular docking; superoxide dismutase.

Abstract

Cancer degenerative disease is a serious problem in Indonesia, caused by free radicals, and can be prevented by antioxidant compounds. Superoxide dismutase (SOD) is the strongest enzyme that acts as a protective organism against oxidative stress. The active compound of red betel can be studied in silico as an activator of the SOD enzyme. Molecular docking visualization, physicochemistry, toxicity of red betel active compounds were studied and continued with molecular docking. The studied parameters were Gibbs free energy (ΔG) and receptor-ligand chemical bonding analysis. The test results show that the active compounds of red betel 6-Amino-2-(3-aminopropylamino)-9-(cyclohexylmethyl)- 2,3,4,5,6,7-hexahydro-1H-purin-8-one was well-absorbed dan safe for consumption with Gibbs free energy value of -9.1490 kcal/mol. Hydrogen and hydrophobic interactions of these compounds were similar to the control ligand, namely β-amyrin and Trehalose. This study concluded that the active compound of red betel 6-Amino-2-(3-aminopropylamino)-9-(cyclohexylmethyl)- 2,3,4,5,6,7-hexahydro-1H-purin-8-one has the best potential to increase the work of Cu/Zn-SOD enzymes. This compound also meets the requirements of Lipinski regulations so that it can be well absorbed orally by the body and is not carcinogenic

References

[GLOBOCAN] Global Cancer Observatory. 2020. Global Cancer Statistics 2020. Lyon (FR): Globocan.

Agistia, D. D., Purnomo, H., Tegar, M., & Nugroho, A. E. (2013). Interaksi Senyawa Aktif dari Aegle marmelos Correa sebagai Anti Inflamasi dengan Reseptor COX-1 dan COX-2. Traditional Medicine Journal, 18, 80–87.

Astri, Y., Sitorus, T., Sigit, J. I., & Sujatno, M. (2012). Toksisitas Akut per Oral Ekstrak Etanol Daun Dewa (Gynura pseudochina (Lour.) DC) terhadap Kondisi Lambung Tikus Jantan dan Betina Galur Wistar. Majalah Kedokteran Bandung, 44(1), 38–43.

Chairunnisa, A., & Runadi, D. (2016). Aktivitas Kalkon terhadap Reseptor Esterogen β (ER-β) Sebagai Antikanker Payudara secara in vitro dan in silico. Farmaka, 14(2), 1–8.

Fakhruri, M., & Rahmayanti, Y. (2021). Potensi Fitokimia Citrus Aurantium (Hesperetin, Naringenin) Dalam Menghambat Xantin Okisidase Pada Hiperurisemia Secara In Silico. Jurnal Health Sains, 2(1), 79–89.

Forli, S., & Olson, A. J. (2012). A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. Journal of Medicinal Chemistry, 55(2), 623–638.

Gaba, M., Gaba, P., Singh, S., & Gupta, G. (2010). An overview on molecular docking. International Journal of Drug Development & Research, 2(2), 219–231.

Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., & LiandY, W. (2019). Tang. ADMET-Score–a Comprehensive Scoring Function for Evaluation of Chemical Drug-Likeness, MedChemComm, 10, 148–157.

Hasan, A. E. Z., Safithri, M., Huda, A. S., & Kurniasih, R. (2022). IN SILICO, TO DETERMINE THE ACTIVE COMPOUNDS OF BLACK TEA AND TURMERIC IN INCREASING THE ACTIVITY OF THE ENZYME SOD. Indonesian Journal of Applied Research (IJAR), 3(1), 32–45.

Hatai, B., & Banerjee, S. K. (2019). Molecular docking interaction between superoxide dismutase (receptor) and phytochemicals (ligand) from Heliotropium indicum Linn for detection of potential phytoconstituents: New drug design for releasing oxidative stress condition/inflammation of osteoarthritis patients. J Pharmacogn Phytochem, 8(2), 1700–1706.

Ighodaro, O., & Akinloye, O. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293.

Lamothe, S. M., Guo, J., Li, W., Yang, T., & Zhang, S. (2016). The human ether-a-go-go-related gene (hERG) potassium channel represents an unusual target for protease-mediated damage. Journal of Biological Chemistry, 291(39), 20387–20401.

Ma, X., Deng, D., & Chen, W. (2017). Inhibitors and Activators of SOD, GSH-Px, and CAT. Enzyme Inhibitors and Activators, 29, 207–224.

Mokoginta, E. P. (2013). 1. Pengaruh Metode Ekstraksi Terhadap Aktivitas Penangkal Radikal Bebas Ekstrak Metanol Kulit Biji Pinang Yaki (Areca Vestiaria Giseke). Pharmacon, 2(4).

Murray, R., Bender, D., Botham, K., Kennelly, P., Rodwell, V., & Weil, P. (2014). Biokimia Harper Ed. 29 Terjemahan: Lilian Roma Manurung. Jakarta: Buku Kedokteran EGC.

Noviardi, H., & Fachrurrazie, F. (2015). Potensi Senyawa Bullatalisin Sebagai Inhibitor Protein Leukotrien A4 Hidrolase Pada Kanker Kolon Secara In Silico. FITOFARMAKA: Jurnal Ilmiah Farmasi, 5(2), 65–73.

Pannindriya, P., Safithri, M., & Tarman, K. (2021). Analisis In Silico Senyawa Aktif Sprirulina platensis sebagai Inhibitor Tirosinase. Jurnal Pengolahan Hasil Perikanan Indonesia, 24(1), 70–77.

RAHMAN, M. F. (2020). ANALISIS IN-SILICO PROTEIN HIGH AFFINITY NEUROTROPHIN 3 RECEPTOR PADA Gallus Gallus (Chicken) DAN PEMANFAATANNYA SEBAGAI SUMBER BELAJAR.

RAO, S., SAYEEDA, M., PRAKASH, T., AP, P., IMRAN, S., & RAVI, L. (2020). CONSTRUCTION OF COMPUTATIONAL 3D STRUCTURES OF PROTEIN DRUG TARGETS OF MYCOBACTERIUM TUBERCULOSIS. Asian Journal of Pharmaceutical and Clinical Research, 82–85.

Safithri, M., Fahma, F., & Marlina, P. W. N. (2012). Analisis proksimat dan toksisitas akut ekstrak daun sirih merah yang berpotensi sebagai antidiabetes. Jurnal Gizi Dan Pangan, 7(1), 43–49.

Safithri, M., & Kurniawati, A. (2016). Formula of Piper crocatum, Cinnamomum burmanii, and Zingiber officinale extracts as a functional beverage for diabetics. International Food Research Journal, 23(3), 1123.

Singh, S., Gupta, A. K., & Verma, A. (2013). Molecular properties and bioactivity score of the Aloe vera antioxidant compounds-in order to lead finding. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4(2), 876–881.

Sobolev, O. V., Afonine, P. V., Moriarty, N. W., Hekkelman, M. L., Joosten, R. P., Perrakis, A., & Adams, P. D. (2020). A global Ramachandran score identifies protein structures with unlikely stereochemistry. Structure, 28(11), 1249–1258.

Suhadi, A., Rizarullah, R., & Feriyani, F. (2019). Simulasi docking senyawa aktif daun binahong sebagai inhibitor enzyme aldose reductase. Sel Jurnal Penelitian Kesehatan, 6(2), 55–65.

Sunil, C., Irudayaraj, S. S., Duraipandiyan, V., Al-Dhabi, N. A., Agastian, P., & Ignacimuthu, S. (2014). Antioxidant and free radical scavenging effects of β-amyrin isolated from S. cochinchinensis Moore. Leaves. Industrial Crops and Products, 61, 510–516.

Tonahi, J. M. M., Nuryanti, S., & Suherman, S. (2014). Antioksidan dari daun sirih merah (Piper crocatum). Jurnal Akademika Kimia, 3(3), 158–164.

Zaelani, B. F. D., Safithri, M., & Andrianto, D. (2021). Molecular Docking of Red Betel (Piper crocatum Ruiz & Pav) Bioactive Compounds as HMG-CoA Reductase Inhibitor. Jurnal Kimia Sains Dan Aplikasi, 24(3), 101–107.

Zheng, X., & Polli, J. (2010). Identification of inhibitor concentrations to efficiently screen and measure inhibition Ki values against solute carrier transporters. European Journal of Pharmaceutical Sciences, 41(1), 43–52.

Published
2022-08-30
How to Cite
Riska Susila Putri, Mega Safithri, & Dimas Andrianto. (2022). Active Compound of Red Betel (Piper Crocatum Ruiz & Pav) as Activator of Cu/Zn Superoxide Dismutase in Silico. Indonesian Journal of Applied Research (IJAR), 3(2), 85-94. https://doi.org/10.30997/ijar.v3i2.212