Microbial Protein Synthesis by Cellulolytic Bacterial Isolates from Feces of Indonesian Endemic Herbivores

  • Ikhsan Qodri Pramartaa Study Program of Nutrition and Feed Science, Graduate School of IPB University, Bogor, Indonesia
  • Komang G. Wiryawan Department of Nutrition and Feed Technology, IPB University, Bogor, Indonesia
  • Sri Suharti Department of Nutrition and Feed Technology, IPB University, Bogor, Indonesia
Keywords: Bacterial population, cellulolytic bacteria, endemic herbivore, growth pattern, microbial protein synthesis

Abstract

Cellulolytic bacterial play an important role in the synthesis of microbial protein in the small intestine as high-quality protein. This research aimed to observe the growth patterns of cellulolytic bacterial isolates from the feces of endemic herbivorous animals in Indonesia, and to evaluate the effect of the addition of cellulolytic bacterial isolates on the synthesis of microbial proteins in vitro. The study used a completely randomized design with four treatments and five replications. The treatments included T0 = Concentrate mix 40%: elephant grass 30%: palm leaves 30% (control), T1 = T0 + 105 CFU mL-1 cellulolytic bacterial isolate, T2 = T0 + 106 CFU mL-1 cellulolytic bacterial isolate, and T3 = T0 + 107 CFU mL-1 cellulolytic bacterial isolate. Variables measured were the growth pattern of bacterial isolates, bacterial population at the optimal growth point, and microbial protein synthesis. The results showed growth pattern of cellulolytic bacterial isolates from Muntjac, Deer and Anoa feces have similar pattern, and was different from the growth pattern of bacterial isolates from bison feces. The optimal growth point of cellulolytic bacterial isolates from the feces of Muntjac, Deer, and Anoa at the 8th hour of incubation with bacterial populations of 1.3 x 109 CFU mL-1, 1.7 x 109 CFU mL-1, and 1.4 x 109 CFU mL-1. The growth pattern and optimal point of cellulolytic bacterial isolates from the feces of Bison at the 12th hour after incubation with bacterial populations of 1,1 x 1010 CFU mL-1. The addition of cellulolytic bacterial isolates did not affect microbial protein synthesis.

Author Biography

Ikhsan Qodri Pramartaa, Study Program of Nutrition and Feed Science, Graduate School of IPB University, Bogor, Indonesia

Department of Animals Science, Faculty of Agriculture, Universitas Djuanda, Bogor, Indonesia

References

Azizi-Shotorkhoft, A., Mohammadabadi, T., Motamedi, H., Chaji, M., & Fazaeli, H. (2016). Isolation and identification of termite gut symbiotic bacteria with lignocellulose-degrading potential, and their effects on the nutritive value for ruminants of some by-products. Anim Feed Sci Technol. 221:234–242. https://doi.org/10.1016/j.anifeedsci.2016.04.016.

Barer, M. R., & Harwood, C. R. (2015). Bacterial viability and culturability. Adv Microb Physio. 41:93–137. doi.org/10.1016/s0065-2911(08)60166-6

Bertrand, R. L. (2019). Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. J Bacteriol. 201(7).doi:10.1128/JB.00697-18.

Cahyaningtyas, Z., Kusmartono, K., & Marjuki, M. (2019). Sintesis protein mikroba rumen dan produksi gas in vitro pakan yang ditambah urea molasses block (umb) yang mengandung ragi tape sebagai sumber probiotik. J Nutr Ternak Trop. 2(2):38–46. https://doi.org/10.21776/ub.jnt.2019.002.02.2.

Direkvandi, E., & Salem, A. Z. M. (2020). The effect of lactate producing and utilizing bacterias and Saccharomyces cerevisiae on anaerobic biofermentation and digestibility in Arabi sheep. J Rumin Res. 7(4):111–129.doi:10.22069/ejrr.2020.17401.1722.

Firsoni, & Ansori D. (2015). The advantages of urea molasses multinutrient block (ummb) with gliricidia (gliricidia sepium) leaves meal invitro. J Ilm Apl Isot Dan Radiasi. 11(2):161–170. http://dx.doi.org/10.17146/jair.2015.11.2.2793.

Froidurot, A., & Julliand, V. (2022). Cellulolytic bacteria in the large intestine of mammals. Gut Microbes. 14(1):2031694. doi:10.1080/19490976.2022.2031694.

Jayasekara, S., & Ratnayake, R. (2019). Microbial Cellulases: an overview and applications. Di dalam: Pascual, A. R., Martin, M. E., editor. Cellulose. London (UK): IntechOpen. hlm 1-20

Kljak, K., Pino, F., & Heinrichs, A. J. (2017). Effect of forage to concentrate ratio with sorghum silage as a source of forage on rumen fermentation, N balance, and purine derivative excretion in limit-fed dairy heifers. J Dairy Sci. 100(1):213–223. https://doi.org/10.3168/jds.2016-11383.

Lima, J., Ingabire, W., Roehe, R., & Dewhurst, R. J. (2023). Estimating microbial protein synthesis in the rumen-can “omics” methods provide new insights into a long-standing question? Vet Sci. 10(12). doi:10.3390/vetsci10120679.

Lu, Z., Xu, Z., Shen, Z., Tian, Y., & Shen, H. (2021). Corrigendum: dietary energy level promotes rumen microbial protein synthesis by improving the energy productivity of the ruminal microbiome. Front Microbiol. 12. doi:10.3389/fmicb.2021.770056.

Malik, W. A., & Javed, S. (2021). Biochemical characterization of cellulase from bacillus subtilis strain and its effect on digestibility and structural modifications of lignocellulose rich biomass. Front Bioeng Biotechnol. 9:800265. doi:10.3389/fbioe.2021.800265.

Nursyirwani, N., Feliatra, F., Tanjung, A., & Harjuni, F. (2020). Isolation of cellulolytic bacteria from mangrove sediment in Dumai Marine Station Riau and the Antibacterial activity against pathogens. IOP Conf Ser Earth Environ Sci. 430(1):12012. doi:10.1088/1755-1315/430/1/012012.

Ogimoto K, & Imai S. (1981). Atlas of rumen microbiology. cabdirect.org. Ed ke-Cited By (since 1981): 983.

Pathak, A. K. (2008). Various factors affecting microbial protein synthesis in the rumen. Vet World. 1(6):186–189.

Peristiwati, Natamihardja, Y.S., & Herlini, H. (2018). Isolation and identification of cellulolytic bacteria from termites gut (Cryptotermes sp.). J Phys Conf Ser. 1013(1):12173. DOI 10.1088/1742-6596/1013/1/012173

Rolfe, M. D., Rice, C. J., Lucchini, S., Pin, C., Thompson, A., Cameron, A. D. S., Alston, M., Stringer, M. F., Betts, R. P., & Baranyi, J. (2012). Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol. 194(3):686–701.doi:10.1128/JB.06112-11.

Shakarami, M. H., Mohammadabadi, T., Motamedi, H., Sari, M., & Yansari, T. A. (2019). Isolation and identification of cellulolytic bacteria from gastrointestinal tract of Arabian horse and investigation of their effect on the nutritional value of wheat straw. J Appl Microbiol. 127(2):344–353.doi:10.1111/jam.14251.

Suharti, S., Firliani, I., Mawar, M., Sekar, V., & Wiryawan, K. G. (2019). In vitro ruminal fermentation, microbial population, fatty acid profile in cattle in the presence of sapindus rarak extract combined with oils microencapsulation. Adv Anim Vet Sci. 7(9):798–805. doi:http://dx.doi.org/10.17582/journal.aavs/2019/7.9.798.805.

Suharti, S., Novrariani, N., & Wiryawan, K. G. (2023). Morphological, biochemical, and molecular identification of cellulolytic bacteria isolated from feces of endemic tropical herbivores. Biodiversitas J Biol Divers. 24(7):4046–4051. DOI:10.13057/biodiv/d240742.

Supriyatna, A., & Ukit. (2016). Screening and isolation of cellulolytic bacteria from gut of black soldier flays larvae (Hermetia illucens) feeding with rice straw. Biosaintifika. 8(3):314–320. doi:10.15294/biosaintifika.v8i3.6762

Tsegaye, B., Balomajumder, C., & Roy, P. (2019). Isolation and characterization of novel lignolytic, cellulolytic, and hemicellulolytic bacteria from wood-feeding termite Cryptotermes brevis. Int Microbiol. 22(1):29–39.doi:10.1007/s10123-018-0024-z.

Vaithiyanathan, S., Bhatta, R., Mishra, A.S., Prasad, R., Verma, D. L., & Singh, N. P. (2007). Effect of feeding graded levels of Prosopis cineraria leaves on rumen ciliate protozoa, nitrogen balance and microbial protein supply in lambs and kids. Anim Feed Sci Technol. 133(3):177–191.doi:https://doi.org/10.1016/j.anifeedsci.2006.04.003.

Vermeersch, L., Perez-Samper. G., Cerulus, B., Jariani, A., Gallone, B., Voordeckers, K., Steensels, J., & Verstrepen, K. J. (2019). On the duration of the microbial lag phase. Curr Genet. 65(3):721–727.doi:10.1007/s00294-019-00938-2.

Vriesekoop, F., & Pamment, N. B. (2005). Acetaldehyde addition and pre-adaptation to the stressor together virtually eliminate the ethanol-induced lag phase in Saccharomyces cerevisiae. Lett Appl Microbiol. 41(5):424–427. doi:10.1111/j.1472-765X.2005.01777.x.

Wahyuningsih, N., & Zulaika, E.. (2018). Perbandingan Pertumbuhan Bakteri selulolitik pada media nutrient broth dan carboxy methyl cellulose. Jurnal Sains dan Seni ITS. 7(2):36–38. DOI: 10.12962/j23373520.v7i2.36283.

Wijanarka, Kusdiyantini, E., & Parman, S. (2016). Screening cellulolytic bacteria from the digestive tract snail (achatina fulica) and test the ability of cellulase activity. Biosaintifika. 8(3):385–391. DOI: 10.15294/biosaintifika.v8i3.7263.

Yoon, I. K., & Stern, M. D. (1995). Influence of direct-fed microbials on ruminal microbial fermentation and performance of ruminants - A Review -. Asian-Australas J Anim Sci. 8(6):533–555.doi:10.5713/ajas.1995.553.

Yuliana, N. (2008). Kinetika pertumbuhan bakteri asam laktat isolat T5 yang berasal dari tempoyak. J Tek Ind Has Pertan. 13(2):108–116.

Zhou, X., & Li, Y. (2015). Atlas of Oral Microbiology. London (UK): Academic Press

Published
2024-08-31
How to Cite
Pramartaa, I. Q., Wiryawan, K. G., & Suharti, S. (2024). Microbial Protein Synthesis by Cellulolytic Bacterial Isolates from Feces of Indonesian Endemic Herbivores. Indonesian Journal of Applied Research (IJAR), 5(2), 147-155. https://doi.org/10.30997/ijar.v5i2.509