• Evita Purnaningrum Universitas PGRI Adi Buana Surabaya, Indonesia
  • Rina Fariana Universitas PGRI Adi Buana Surabaya, Indonesia
Keywords: forecasting, ensemble, time series, pandemic, stock price


World financial markets have been affected and depressed during the COVID-19 pandemic; all-digital capital market transactions experienced a sharp decline. No exception is the dynamics of capital markets in ASEAN countries. The uncertainty of the impact of the ASEAN Pandemic encourages stock price forecasting to reduce investment risk. It is also a topic that is consistently enthusiastically discussed in economic forums. This article applied stock price changes in five major ASEAN countries one year after the Coronavirus. Dynamic ensemble method that combines various predictive models to improve the accuracy of forecasts. The results showed that the model has a high level of accuracy with a small error value, which is below 1.5% for MAPE (Mean Absolute Percentage Error), and an average RMSE (Root Mean Square Error) of 5%. This suggests that investors could reduce their long-term investment risk by stealing the pandemic by using this model. In addition, these results are committed to being used as a basis for policy and decision-making for investors


Akyuz, A. O., Uysal, M., Bulbul, B. A., & Uysal, M. O. (2017). Ensemble approach for time series analysis in demand forecasting: Ensemble learning. Proceedings - 2017 IEEE International Conference on Innovations in Intelligent Systems and Applications, INISTA 2017. https://doi.org/10.1109/INISTA.2017.8001123

Allende, H., & Valle, C. (2017). Ensemble methods for time series forecasting. In Claudio Moraga: A passion for multi-valued logic and soft computing (pp. 217–232). Cham: Springer.

Anh, D. L. T., & Gan, C. (2020). The impact of the COVID-19 lockdown on stock market performance: evidence from Vietnam. Journal of Economic Studies. https://doi.org/10.1108/JES-06-2020-0312

CAMBA, A. L., & CAMBA, A. C. (2020). The Effect of COVID-19 Pandemic on the Philippine Stock Exchange, Peso-Dollar Rate, and Retail Price of Diesel. Journal of Asian Finance, Economics, and Business. https://doi.org/10.13106/jafeb.2020.vol7.no10.543

Cerqueira, Vitor, Torgo, L., Oliveira, M., & Pfahringer, B. (2017). Dynamic and heterogeneous ensembles for time series forecasting. Proceedings - 2017 International Conference on Data Science and Advanced Analytics, DSAA 2017. https://doi.org/10.1109/DSAA.2017.26

Cerqueira, Vítor, Torgo, L., Pinto, F., & Soares, C. (2017). Arbitrated Ensemble for Time Series Forecasting. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-71246-8_29

Chia, R. C. J., Liew, V. K. Sen, & Rowland, R. (2020). Daily new COVID-19 cases, the movement control order, and Malaysian stock market. International Journal of Business and Society.

Cho, V. (2003). A comparison of three different approaches to tourist arrival forecasting. Tourism Management. https://doi.org/10.1016/S0261-5177(02)00068-7

Das, M., & Ghosh, S. K. (2017). A Deep-Learning-Based Forecasting Ensemble to Predict Missing Data for Remote Sensing Analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2017.2760202

De Gooijer, J. G., & Hyndman, R. J. (2006). 25 years of time series forecasting. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2006.01.001

Fauziyah, & Purnaningrum, E. (2021). Optimization of Stock Portfolios Using Goal Programming Based on the Kalman-Filter Method. Jurnal Matematika MANTIK. https://doi.org/10.15642/mantik.2021.7.1.20-30

Galicia, A., Talavera-Llames, R., Troncoso, A., Koprinska, I., & Martínez-Álvarez, F. (2019). Multi-step forecasting for big data time series based on ensemble learning. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2018.10.009

Gormsen, N. J., & Koijen, R. S. J. (2020). Coronavirus: Impact on stock prices and growth expectations. Review of Asset Pricing Studies. https://doi.org/10.1093/rapstu/raaa013

Huang, W., Nakamori, Y., & Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers and Operations Research. https://doi.org/10.1016/j.cor.2004.03.016

Kim, Y., & Hur, J. (2020). An ensemble forecasting model of wind power outputs based on improved statistical approaches. Energies. https://doi.org/10.3390/en13051071

Kusumawardhani, D. A., & Purnaningrum, E. (2021). Penyebaran Pengguna Digital Wallet Di Indonesia Berdasarkan Google Trends Analytics. INOVASI.

Mahato, P. K., & Attar, V. (2014). Prediction of gold and silver stock price using ensemble models. 2014 International Conference on Advances in Engineering and Technology Research, ICAETR 2014. https://doi.org/10.1109/ICAETR.2014.7012821

Nafah, H. K., & Purnaningrum, E. (2021). Penggunaan Big Data Melalui Analisis Google Trends Untuk Mengetahui Perspektif Pariwisata Indonesia Di Mata Dunia. Snhrp.

Narayan, S., Purnaningrum, E., & Khawari, B. (2021). Assessing the Financial Implications of COVID-19 Within the SVAR Framework for Some Asian Countries. The Indian Economic Journal. https://doi.org/10.1177/00194662211036097

Purnaningrum, E., Cahyaningtias, S., & Kusumawardhani, D. A. (2021). Augmentation time series model with Kalman filter to predict foreign tourist arrivals in East Java. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1869/1/012116

Purnaningrum, E. (2018). Renewable Stock Price Model Sebagai Pendukung Investasi Saham: Studi Kasus Saham Jii. Kolegial.

Purnaningrum, E, & Nafah, H. K. (2021). Analisis Kalman filter berbasis Google Trends untuk Prediksi Kedatangan Wisatawan Mancanegara di Indonesia Pasca Pandemi. J Statistika: Jurnal Ilmiah Teori Dan Aplikasi Statistika, 14(2), 110–115. https://doi.org/10.36456/jstat.vol14.no2.a4956

Purnaningrum, Evita. (2020). Pendekatan Metode Kalman Filter untuk Peramalan Pergerakan Indeks Harga Saham Terdampak Pandemi Coronavirus. Majalah Ekonomi.

Purnaningrum, Evita. (2021). Model Dynamic Ensemble Time Series untuk Prediksi Indeks Harga Saham Utama di Indonesia Pasca Pandemi. Majalah Ekonomi.

Purnaningrum, Evita, & Apriliani, E. (2016). Auto Floodgate Control Using EnKf-NMPC Method. International Journal of Computing Science and Applied Mathematics. https://doi.org/10.12962/j24775401.v2i1.1579

Purnaningrum, Evita, & Ariqoh, I. (2019). Google Trends Analytics dalam Bidang Pariwisata. Majalah Ekonomi.

Purnaningrum, Evita, & Ariyanti, V. (2020). Pemanfaatan Google Trends Untuk Mengetahui Intervensi Pandemi Covid-19 Terhadap Pasar Saham Di Indonesia. Jurnal.Unipasby.Ac.Id.

Qiu, X., Zhang, L., Ren, Y., Suganthan, P., & Amaratunga, G. (2014). Ensemble deep learning for regression and time series forecasting. IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - CIEL 2014: 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning, Proceedings. https://doi.org/10.1109/CIEL.2014.7015739

Sadorsky, P. (2021). A Random Forests Approach to Predicting Clean Energy Stock Prices. Journal of Risk and Financial Management. https://doi.org/10.3390/jrfm14020048

Štifanić, D., Musulin, J., Miočević, A., Baressi Šegota, S., Šubić, R., & Car, Z. (2020). Impact of COVID-19 on Forecasting Stock Prices: An Integration of Stationary Wavelet Transform and Bidirectional Long Short-Term Memory. Complexity. https://doi.org/10.1155/2020/1846926

How to Cite
Purnaningrum, E., & Fariana, R. (2022). DYNAMIC ENSEMBLE TIME SERIES FOR PREDICTION MAJOR INDICES IN ASEAN. Indonesian Journal of Social Research (IJSR), 4(1), 54-62. https://doi.org/10.30997/ijsr.v4i1.171